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Abstract 
Zencode is a project inspired by the discourse on data commons and technological sovereignty. The 
established goal is that of improving people's awareness of how their data is processed by algorithms, 
as well facilitate the work of developers to create applications that follow privacy by design principles. 

The main use case taken in consideration is that of distributed computing capable of processing 
untrusted code and executing advanced cryptographic functions, for instance it can be used with (but 
not limited to) any distributed ledger (blockchain) implementation as an interpreter of smart 
contracts. 

The Zencode language makes it easy and less error-prone to write portable scripts implementing end-
to-end encryption with operations executed inside an isolated environment (the Zenroom VM) that 
can be easily ported to any platform, embedded in any language and made inter-operable with any 
blockchain. 

The Zencode implementation is heavily inspired by modern research in language-theoretical security, 
it adopts Lua as direct-syntax parser to build a non-Turing complete domain-specific language 
enforcing coarse-grained of computations and recognition of data before processing. Its interpreter, 
the Zenroom VM, supports secure isolation and protects its hosts from errors, it has no access to the 
calling process, the network, underlying operating system or filesystem. 

Zenroom VM is a process virtual machine: a restricted execution environment designed to process 
safely any Zencode instruction, even when malicious. Upon any failure during phases of interpretation 
of code, validation of data or execution of operations Zenroom aborts returning meaningful error 
messages that help programmers assess what problem had occurred. 

Zencode language scenarios are written following a declarative approach and provide functional tools 
to manipulate efficiently even complex data structures. 
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Introduction 
 
Since DECODE project's inception, developing the Zencode language and releasing the Zenroom VM 
interpreter has been an extremely motivating ambition, as it concretely provides a solution for the 
techno-political implications illustrated by the AlgoSov.eu observatory and researched in my Ph.D 
thesis on "Algorithmic Sovereignty". 

I now begin this document illustrating the techno-political motivations for the development of 
Zenroom in the context of the DECODE project, an European H2020 grant (nr. 732546) coordinated by 
colleague Dr. Francesca Bria. 

I'll then proceed sharing my considerations on the state of the art of language design and security of 
execution in trust-less environments. The safe execution of untrusted code is required by most 
distributed ledger technologies (also commonly referred to as blockchain); it is as well a desirable 
feature for the reliability of cryptographic data manipulation for general use (certification, 
authentication and more advanced uses contemplated in Zenroom). 

At last the pars-construens of this whitepaper will describe how the Zencode language and the 
Zenroom VM interpreter have been implemented to execute safely and efficiently simplified smart-
rules describing cryptographic operation and data transformations using human readable language. 
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For the awareness of algorithms 
 

The goal of the Zenroom VM and the Zencode language is ultimately that of realizing a simple, non-
technical, human-readable language for smart-rules that are actually executed in a verifiable and 
provable manner within a controlled execution environment. 

To articulate the importance of this quest and the relevance of the results presented, which I believe 
to be unique in the landscape of blockchain smart-contract languages, is important to remind us of the 
condition in which most people find themselves when participating in the regime of truth that is built 
by algorithms. 

As the demand and production of well-connected vessels for the digital dimension has boomed, 
machine-readable code today functions as a literature informing the architecture in which human 
interactions happens and decisions are taken. The "telematic condition" is realized by an integrated 
data-work continuously engaging the observer as a participant. Such a "Gesamtdatenwerk" (Ascott, 
1990) may seem an abstract architecture, yet it can be deeply binding under legal, ethical and moral 
circumstances. 

The comprehension of algorithms, the awareness of the way decisions are formulated, the 
implications of their execution, is not just a technical condition, but a political one, for which access to 
information cannot be just considered a feature, but a civil right (Pelizza and Kuhlmann, 2017). It is 
important to understand this in relation to the "classical" application of algorithms executed in a 
centralized manner, but even more in relation to distributed computing scenarios posed by blockchain 
technologies, which theorize a future in which rules and contracts are executed irrevocably and 
without requiring any human agency. 

The legal implications with regards to standing rights and liabilities are out of the scope here, while 
the focus is on ways humans, even when lacking technical literacy, can be made aware of what an 
algorithm does. Is it possible to establish the ground for a shared language that informs digital 
architects about their choices and inhabitants about the digital territory? Going past assumptions 
about the strong role algorithms have in governance and accountability (Diakopoulos, 2016), how can 
we inform digital citizens about their condition? 

When describing the virtualization of economic activity in the global context, Saskia Sassen describes 
the need we are observing as that of an analytical vocabulary: 

The third component in the new geography of power is the growing importance of electronic 
space. There is much to be said on this issue. Here, I can isolate one particular matter: the 
distinctive challenge that the virtualization of a growing number of economic activities presents 
not only to the existing state regulatory apparatus, but also to private-sector institutions 



Zencode Whitepaper v0.11 Dyne.org foundation 

7 

increasingly dependent on the new technologies. Taken to its extreme, this may signal a control 
crisis in the making, one for which we lack an analytical vocabulary.(Sassen, 1996) 

The analysis of legal texts and regulations here shifts into an entirely new domain; it has to refer to 
conditions that only algorithms can help build or destroy. Thus, referring to this theoretical 
framework, the research and development of a free and open source language that is intelligible to 
humans becomes of crucial importance and, from an ethical standing point, DECODE as many other 
projects in the same space cannot be exempted from addressing it. 

When we consider algorithms as contracts regulating relationships (between humans, between 
humans and nature and, nowadays more increasingly, between different contexts of nature itself) 
then we should adopt a representation that is close to how the human mind works and that is directly 
connected to the language adopted. Since algorithms are the systemic product of complex 
relationships between contracts and relevant choices made by standing actors (Monico, 2014), the 
ability to verify which algorithms are in place for a certain result to be visualized becomes very 
important and should be embedded in every application: to understand and communicate what 
algorithms and to describe and experiment their repercussions on reality. 

For a deeper exploration of the techno-political implications raised by this document please refer to 
DECODE's blog-post on Algorithmic Sovereignty which also contains a series of historical examples of 
critical situations that help to understand the urgency we are facing. 

DECODE goes in the direction of following a technical and scienifical restearch path and call for a new 
form of municipal rationality that contemplates technological sovereignty, citizen participation and 
ownership. 

This narrative is echoing through world's biggest municipal administrations as we speak: a stance 
against the colonization of dense settlements by complex technical systems that are far from the reach 
of citizen's political control. The "Manifesto in favour of technological sovereignty and digital rights for 
cities" is now being considered as a standard guideline for ethics in governance by many cities of the 
world. 

This whitepaper is then also a call for action to fellow programmers out there: we need to write code 
that is understandable by other humans and by animals, plants, all the living world we inoculate with 
our sensors and manipulate through automation. The term "smart" should really mean 
understandable, accessible, open and trustworthy (Nevejan and others, 2007); then smart-contracts 
should be expressed in a language that most humans can understand. Good code is not what is 
skillfully crafted or most efficient, but what can be read by others, studied, changed, adapted. 

Let's adopt intuitive name-spaces that can be easily matched with reality or simple metaphors, let's 
make sure that what we write is close to what we mean. Common understanding of algorithms is 
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necessary, because their governance is an inter-disciplinary exercise and cannot be left in the hands of 
a technical elite. 
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State of the art 
 

In the DECODE project the main way to communicate between nodes is via a language rather than an 
API. All read and write operations affecting entitlements and accessing attributes can be expressed 
using the Zencode language whose ambition is to become a robust open standard for authorization of 
operations on personal data. The Zencode language will aim to naturally avoid complex constructions 
and define sets of transformations that can be then easily represented with visual metaphors. 

To understand where this vision comes from, I'll proceed analyzing what exists already in practice and 
what are the theoretical approaches that can be followed in order to progress from a rather stalled 
state of the art mostly consisting in the adoption of heavily machine-based and error-prone, stateful 
and touring-complete scripting languages. 

More considerations about the consensus algorithm of a DLT networks are intentionally left out of this 
document, since they are very specific issues concerning DLT implementations. Assuming an ideal 
condition where all network behavior is validated for being fully deterministic, I will use this 
whitepaper to focus exclusively on the task of language design for distributed computations. 

Said that, I will now proceed to set the scenario and implications of Distributed Ledger Technologies 
(DLT) which in my opinion are establishing the notion of a new element in the classic way computer 
memory is organized and referred to. 

A new memory model 
In computing science the concepts of HEAP and STACK are well known and represent the different 
areas of memory in which a single computer can store code, address it while executing it and store 
data on which the code can read and write. With the advent of "virtual machines" (abstract computing 
machines like JVM or BEAM, not virtualised operating systems) the implementation of logic behind the 
HEAP and STACK became more abstract and not anymore bound to a specific hardware architecture, 
therefore leaving more space for the portability of code and creative memory management practices 
(like garbage collection). It is also thanks to the use of virtual machines that high level languages 
became closer to the way humans think, rather than the way machines work, benefitting creativity, 
awareness and auditability (McCartney, 2002). This is an important vector of innovation for the 
Zencode language implementation, since it is desirable for this project to implement a language that is 
close to the way humans think. 

With the advent of distributed computing technology and blockchain implementations there is a 
growing necessity to conceive the HEAP and STACK differently (Pizka and Rehn, 2002), mostly because 
there are many more different conditions for memory bound to its persistence, read/write speed, 
mutability, distribution etc. 
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A "distributed ledger" (DLT) is a resilient and immutable memory space that can be addressed only by 
deterministic operations and can be written only when these operations lead to same results even 
when executed on very different machines. The DLT memory space is then a log of "signed events" 
whose authenticity can be verified by any node being part of the network. 

Looking at the engineering of distributed systems from this new perspective brings the intuition that 
developing new ways to manage the HEAP memory space can be very beneficial when conscious 
about the implications of the distributed dimension of computation. 
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This is a how the Zenroom VM manages its memory: 

 

More details of this figure will become clear as I'll proceed illustrating the way the Zencode language is 
structured after the model of a Behavior Driven Development language (BDD). What is relevant to say 
now is that the HEAP depicted above implies 3 sequential states (Given -> When -> Then) which are 
respectively read-only, read-write and write-only. 

Blockchain languages 
I'll engage a brief exploration of the main language implementations working on DLT. Far from being 
an exhaustive overview, this section highlights the characteristics of the two most prominent 
implementations and criticize the widespread approach to building virtual machines that are based on 
assembler-like operation codes and low-level languages. 

The conclusion of this section is that DLT languages so far existing are designed with a product-
oriented mindset, starting from the implementation of a virtual machine that can process OP_CODEs. 
Higher level languages build upon it, parsing higher level syntactics and semantics and compiling them 
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into a series of OP_CODEs. This is the natural way most languages like ASM, C and C++ have evolved 
through the years. 

Arguably, a task-oriented mindset should be assumed when re-designing a new DLT language: that 
would be the equivalent of a human-centered research and design process. The opportunity for 
innovating the field lies in abandoning the OP_CODE approach and instead build an External Domain 
Specific Language (Fowler, 2010) using an existing grammar to do the Syntax-Directed Translation. The 
Semantic Model can be then a coarse-grained implementation that can sync computations with 
blockchain-based deterministic conditionals. 

Bitcoin's SCRIPT 
Starting with the "SCRIPT" implementation in Bitcoin (Nakamoto, 2008) and ending with the Ethereum 
Virtual Machine implementation (Wood, 2014), it is clear that blockchain technologies were 
developed with the concept of "distributed computation" in mind. The scenario is that of a network of 
computers that, at any point in time, can execute the same code on a part of the distributed ledger 
and that execution would yield to the same results, making the computation completely deterministic. 

The distributed computation is made by blockchain nodes that act as sort of "virtual machines" and 
process "operation codes" (OP_CODE) just like a computer does. These OP_CODES in fact resemble 
assembler language operations. 

In Bitcoin the so called SCRIPT implementation had an unfinished number of "OP_CODE" commands 
(operation codes) at the time of its popularization and, around the 0.6 release, the feature was in 
large part deactivated to ensure the security of the network, since it was assessed by most developers 
involved that the Bitcoin implementation of SCRIPT was unfinished and represented threats to the 
network. Increasing the complexity of code that can be executed by nodes of an open network is 
always a risk, since code can contain arbitrary operations and commands that may lead to 
unpredictable results affecting both the single node and the whole network. The shortcomings of the 
SCRIPT in Bitcoin were partially addressed: its space for OP_RETURN (Roio et al., 2015) became the 
contested ground for payloads (Sward et al., 2017) that could be interpreted by other VMs, as well the 
limit was partially circumvented by moving more complex logic in touch with the Bitcoin blockchain 
(Aron, 2012), for instance using the techniques adopted by Mastercoin (Willett, 2013) and 
"sidechains" as Counterparty (Bocek and Stiller, 2018) or "pegged sidechains" (Back et al., 2014) 
implementations. All these are implementations of VMs that run in parallel to Bitcoin, can "peg" their 
results on the main Bitcoin blockchain and still execute more complex operations in another space, 
where tokens and conditions can be created and affect different memory spaces and distributed 
ledgers. 
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Languages implemented so far for this task are capable of executing single OP_CODEs: 
implementations are very much "machine-oriented" and focused on reproducing the behaviour of a 
turing-complete machine (Wegner et al., 2012) capable of executing generic computing tasks. 

The Ethereum VM 
The Ethereum Virtual Machine is arguably the most popular implementation of a language that can be 
computed by a distributed and decentralised network of virtual machines that have all their own HEAP 
and STACK, but all share the same immutable distributed ledger on which "global" values and the code 
(contracts) manipulating them can be inscribed and read from. 

Computation in the EVM is done using a stack-based bytecode language that is like a cross between 
Bitcoin Script, traditional assembly and Lisp (the Lisp part being due to the recursive message-sending 
functionality). A program in EVM is a sequence of opcodes, like this: 

PUSH1 0 CALLDATALOAD SLOAD NOT PUSH1 9 JUMPI STOP JUMPDEST PUSH1 32 CALLDATALOAD PUSH1 0 CALLDATALOAD 
SSTORE 
 
The purpose of this particular contract is to serve as a name registry; anyone can send a message 
containing 64 bytes of data, 32 for the key and 32 for the value. The contract checks if the key has 
already been registered in storage, and if it has not been then the contract registers the value at that 
key. The address of the new contract is deterministic and calculated on the sending address and the 
number of times that the sending account has made a transaction before. 

The EVM is a simple stack-based architecture. The word size of the machine (and thus size of stack 
item) is 256-bit. This was chosen to fit a simple word-addressed byte array. The stack has a maximum 
size of 1024. The machine also has an independent storage model; this is similar in concept to the 
memory but rather than a byte array, it is a word- addressable word array. Unlike memory, which is 
volatile, storage is nonvolatile and is maintained as part of the system state. All locations in both 
storage and memory are well-defined initially as zero. 

The machine does not follow the standard von Neumann architecture. Rather than storing program 
code in generally-accessible memory or storage, it is stored separately in a virtual ROM that can only 
be interacted with via a specific instruction.  The machine can have exceptional execution for several 
reasons, including stack underflows and invalid instructions. Like the out-of-gas (OOG) exception, they 
do not leave state changes intact. Rather, the machine halts immediately and reports the issue to the 
execution agent (either the transaction processor or, recursively, the spawning execution 
environment) which will deal with it separately (Wood, 2014). 

The resulting implementation consists of a list of OP_CODEs whose execution requires a "price" to be 
paid (Ethereum's currency for the purpose is called "gas"). This way an incentive is created for running 
nodes: a fee is paid to nodes for computing the contracts and confirming the outcomes of their 
execution. This feature technically defines the Ethereum VM as implementing an almost Turing-
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complete machine since its execution is conditioned by the availability of funds for computation. This 
approach relies on the fact that each operation is executed at a constant unit of speed. 

On top of these OP_CODEs the "Solidity" language was developed as a high-level language that 
compiles to OP_CODE sequences. Solidity aims to make it easier for people to program "smart 
contracts". But it is arguable that the Solidity higher-level language, widely present in all Ethereum 
related literature, carries several problems: the shortcomings of its design can be indirectly related to 
some well-known disasters provoked by flaws in published contracts. To quickly summarise some 
flaws: 

•  there is no garbage collector nor manual memory management 

•  floating point numbers are not supported 

•  there are known security flaws in the compiler 

•  the syntax of loops and arrays is confusing 

•  every type is 256bits wide, including bytes 

•  there is no string manipulation support 

•  functions can return only statically sized arrays 

To overcome the shortcomings and create some shared base of reliable implementations, 
programmers using Solidity currently adopt "standard" token implementation libraries with basic 
functions that are proven to be working reliably: known as ERC20, the standard is made for tokens to 
be supported across different wallets and to be reliable. Yet even with a recent update to a new 
version (ERC232) the typical code constructs that are known to be working are full of checks (assert 
calls) to insure the reliability of the calling code. For example, typical arithmetic operations need to be 
implemented in Solidity as: 

function times(uint a, uint b) constant private returns (uint) { 
    uint c = a * b; 
    assert(a == 0 || c / a == b); 
    return c; 
} 
function minus(uint a, uint b) constant private returns (uint) { 
    assert(b <= a); 
    return a – b; 
} 
function plus(uint a, uint b) constant private returns (uint) { 
    uint c = a + b; 
    assert(c>=a); 
    return c; 
} 
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It must be also noted that the EVM allows calling external contracts that can take over the control flow 
and make changes to data that the calling function wasn't expecting. This class of bug can take many 
forms and all of major bugs that led to the DAO's collapse (O’Hara, 2017) were bugs of this sort. 

Despite the shortcomings, nowadays Solidity is widely used: it is the most used "blockchain language" 
supporting "smart-contracts" in the world. 

Language Security 
 

This section will establish the underpinnings of the Zencode language, starting from its most 
theoretical assumptions, to conclude with specific requirements. In order to do so, I will concentrate 
on the recent corpus developed by research on "language-theoretic security" (LangSec). Here below 
we include a brief explanation condensed from the information material of the LangSec.org project 
hosted at IEEE. This research benefits from being informed by the experience of the exploit 
development community: exploitation is a practical exploration of the space of unanticipated state, its 
prevention or containment. 

"In a nutshell [...] LangSec is the idea that many security issues can be avoided by applying a 
standard process to input processing and protocol design: the acceptable input to a program 
should be well-defined (i.e., via a grammar), as simple as possible (on the Chomsky scale of 
syntactic complexity), and fully validated before use (by a dedicated parser of appropriate but 
not excessive power in the Chomsky hierarchy of automata)." (Momot et al., 2016) 

LangSec is a design and programming philosophy that focuses on formally correct and verifiable input 
handling throughout all phases of the software development lifecycle. In doing so, it offers a practical 
method of assurance of software free from broad and currently dominant classes of bugs and 
vulnerabilities related to incorrect parsing and interpretation of messages between software 
components (packets, protocol messages, file formats, function parameters, etc.). 

This design and programming paradigm begins with a description of valid inputs to a program as a 
formal language (such as a grammar). The purpose of such a disciplined specification is to cleanly 
separate the input-handling code and processing code. A LangSec-compliant design properly 
transforms input-handling code into a recognizer for the input language; this recognizer rejects non-
conforming inputs and transforms conforming inputs to structured data (such as an object or a tree 
structure, ready for type- or value-based pattern matching). The processing code can then access the 
structured data (but not the raw inputs or parsers temporary data artifacts) under a set of 
assumptions regarding the accepted inputs that are enforced by the recognizer. 

This approach leads to several advantages: 

1.  produce verifiable recognizers, free of typical classes of ad-hoc parsing bugs 



Zencode Whitepaper v0.11 Dyne.org foundation 

16 

2. produce verifiable, composable implementations of distributed systems that ensure equivalent 
parsing of messages by all components and eliminate exploitable differences in message 
interpretation by the elements of a distributed system 

3. mitigate the common risks of ungoverned development by explicitly exposing the processing 
dependencies on the parsed input. 

As a design philosophy, LangSec focuses on a particular choice of verification trade-offs: namely, 
correctness and computational equivalence of input processors. 

Threats when developing a language 
As one engages the task of developing a language there are four main threats to be identified, well 
described in LangSec literature: 

Ad-hoc notions of input validity 
Formal verification of input handlers is impossible without formal language-theoretic specification of 
their inputs, whether these inputs are packets, messages, protocol units, or file formats. Therefore, 
design of an input-handling program must start with such a formal specification.  Once specified, the 
input language should be reduced to the least complex class requiring the least computational power 
to recognize. Considering the tendency of hand-coded programs to admit extra state and computation 
paths, computational power susceptible to crafted inputs should be minimized whenever possible. 
Whenever the input language is allowed to achieve Turing-complete power, input validation becomes 
undecidable; such situations should be avoided. For example, checking 'benignness' of arbitrary 
Javascript or even an HTML5+CSS page is a losing proposition. 

Parser differentials 
Mutual misinterpretation between system components. Verifiable composition is impossible without 
the means of establishing parsing equivalence between different components of a distributed system. 
Different interpretation of messages or data streams by components breaks any assumptions that 
components adhere to a shared specification and so introduces inconsistent state and unanticipated 
computation (Momot et al., 2016). In addition, it breaks any security schemes in which equivalent 
parsing of messages is a formal requirement, such as the contents of a certificate or of a signed 
message being interpreted identically, for example a X.509 Certificate Signing Request as seen by a 
Certificate Authority vs. the signed certificates as seen by the clients or signed app package contents 
as seen by the signature verifier versus the same content as seen by the installer (as in the recent 
Android Master Key bug (Freeman, 2013). An input language specification stronger than deterministic 
context-free makes the problem of establishing parser equivalence undecidable. Such input languages 
and systems whose trustworthiness is predicated on the component parser equivalence should be 
avoided. Logical programming using Prolog for instance, or languages like Scheme derived from LISP, 
or OCaml or Erlang would match then our requirements, but they aren't as usable as desired. As a 
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partial solution to this problem the Zencode language parser (and all its components and eventually 
linked shared libraries) should be self-contained and clearly versioned and hashed and its hash verified 
before every computation. 

Mixing of input recognition and processing 
Mixing of basic input validation ("sanity checks") and logically subsequent processing steps that 
belong only after the integrity of the entire message has been established makes validation hard or 
impossible. As a practical consequence, unanticipated reachable state exposed by such premature 
optimization explodes. This explosion makes principled analysis of the possible computation paths 
untenable. LangSec-style separation of the recognizer and processor code creates a natural 
partitioning that allows for simpler specification-based verification and management of code. In such 
designs, effective elimination of exploit-enabling implicit data flows can be achieved by simple systems 
memory isolation primitives. 

Language specification drift 
A common practice encouraged by rapid software development is the unconstrained addition of new 
features to software components and their corresponding reflection in input language specifications. 
Expressing complex ideas in hastily written code is a hallmark of such development practices. In 
essence, adding new input feature requirements to an already underspecified input language 
compounds the explosion of state and computational paths. 
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The Zencode language 
 

This section describes the salient implementation details of the Zencode DSL, the smart-rule language 
for DECODE, tailored on its use-cases and based on the Zenroom controlled execution environment 
(VM). Implementation details refer only to Zencode and not to how Zenroom is implemented, since 
the latter is already covered in other documents. 

The implementation section contains three parts explaining: 

• the language model inherited by Behaviour Driven Development 

• the data validation model based on Schema Validation 

• the implementation of implicit certificates 

 

Syntax-Directed Translation 
Lua is an interpreted, cross-platform, embeddable, performant and low-footprint language. Lua's 
popularity is on the rise in the last couple of years (Costin, 2017). Simple design and efficient usage of 
resources combined with its performance make it attractive for production web applications, even to 
big organizations such as Wikipedia, CloudFlare and GitHub. In addition to this, Lua is one of the 
preferred choices for programming embedded and IoT devices. This context allows an assumption of a 
large and growing Lua codebase yet to be assessed. This growing Lua codebase could be potentially 
driving production servers and an extremely large number of devices, some perhaps with mission-
critical function for example in automotive or home-automation domains. 

Lua stability has been extensively tested through a number of public applications including the 
adoption by the gaming industry for untrusted language processing in "World of Warcraft" scripting. It 
is ideal for implementing an external DSL using C or Python as a host language. 

Behaviour Driven Development 
In Behaviour Driven Development (BDD), the important role of software integration and unit tests is 
extended to serve both the purposes of designing the human-machine interaction flow (user journey 
in UX terms) and of laying down a common ground for interaction between designers and 
stakeholders. In this Agile software development methodology the software testing suite is based on 
natural language units that grant a common understanding for all participants and observers. 

I'm very grateful to my friend and colleague Puria Nafisi Azizi for this brilliant intuition: that of 
adopting BDD for develing Zencode and implement a human-friendly language to face the challenges 
posed by the pilots of the DECODE project. Among the diverse challenges we faced the recurrent need 
of implementing advanced and complex cryptographic schemes to be executed in a distributed 
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manner across different nodes. For a large project involving different patterns in the technological 
delivery, a prominent difficulty was that of sharing components behaving in a consistent and 
deterministic way across different platforms and to share simple knowledge on how to include these 
components in different applications as well how to update their cryptographic operations. 

For our implementation of Zencode, definable as a dialect of BDD, the first step has been that of 
mapping series of interconnected cascading sentences of operations to the actual source code 
describing their execution to the Zenroom VM; this implementation has to be done manually with 
knowledge of Lua scripting and of the higher level functions that grant communication with the 
Zenroom VM. 

Zencode then becomes a "textual frontend" that is easy to embed in graphical applications and whose 
purpose is to wire expressions and executions by means of utterances expressed in human language. 

Referring to the Cucumber implementation of BDD, arguably the most popular in use by the industry 
to day and factual standard (Wynne, 2012), the grammar of utterances is very simple and definable as 
a "cascading" flow indeed, since the fixed sequence of lines can follow only one fixed order: 

Given .. and* .. When .. and* .. Then print .. 

This sequence is fixed and in simple terms consists of: 

1. an extendable initialisation of states "Given (and)" 

2. followed by an extendable transformation of states "When (and)" 

3. concluded by returning the final states "Then (and)". 

The Zenroom implementation simply defines fixed sequences of strings, mapping them to 
cryptographic functions, allowing the presence of variables that are expected to be arguments for the 
functions. These variables can then be changed by participants (frontend developers or application 
operators) as they are marked by inclusion a repeating sequence of two adjacent single quotes ('  '). 

 

The underlying parser is based on a finite state machine controlling the change of states and capable 
of executing security operations (data validation checks, memory wiping etc.) here below the scheme 
of allowed state changes: 

   { name = 'enter_given',    from = { 'scenario' },        to = 'given' }, 
   { name = 'enter_when',     from =   'given',             to = 'when' }, 
   { name = 'enter_then',     from = { 'given', 'when' },   to = 'then' }, 
   { name = 'enter_and',      from =   'given',             to = 'given' }, 
   { name = 'enter_and',      from =   'when',              to = 'when' }, 
   { name = 'enter_and',      from =   'then',              to = 'then' } 
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Zencode acts upon a positive, unique and non-flexible match of the first word of each new line, checks 
it complies with the current parser machine state and then proceeds parsing the whole phrase minus 
the variables, saving a pointer to the corresponding function if found along with the contents of 
variables if any. 

Later, during the execution phase, Zenroom will take the collected pointers and execute them calling 
the functions and providing them as many arguments as the variables parsed. As a result, one (or 
more, synonyms are supported) non-repeating line of parsed Zencode utterance corresponds to a 
declared function allowing the execution of Lua commands inside the Zenroom VM. 

Brief examples of this implementation follow: 

Given("I introduce myself as ''", function(name) ACK[whoami] = name end) 
Given("I am known as ''",         function(name) ACK[whoami] = name end) 
 

The above definition of two lines possibly occurring within the utterances in Zencode are 
demonstrating how one can declare their own name by using one of the two different phrases, 
leading to a simple assignment of the variable whoami which will be available to the subsequent 
When prefixed Zencode block. 

This simple demonstration is a hint to the fact that multiple patterns can be defined also in different 
ways, making the Zencode DSL implementation very easy to translate across different spoken 
languages as well contextualised within specific idiolects adopted by humans. 

Furthermore, another example of implementation: 

Given("that '' declares to be ''",function(who, decl) 
         -- declaration 
         if not declared then declared = decl 
         else declared = declared .." and ".. decl end 
         whois = who 
end) 
Given("declares also to be ''", function(decl) 
         ZEN.assert(who ~= "", "The subject making the declaration is unknown") 
         -- declaration 
         if not declared then declared = decl 
         else declared = declared .." and ".. decl end 
end) 
Shows how is possible to accept multiple variables and process them through more complex 
transformations that also contemplate the concatenation of contents to previous states. States are in 
fact permanent within the scope of the execution of a single utterance and will be modified in the 
same deterministic order by which they are expressed across lines. What is also visible within this 
example implementation, which we intend to facilitate by customization made by people who have a 
simple knowledge of Zenroom's API and LUA scripting, is that the 'ZEN.' namespace makes available a 
number of utility functions to easily check states (asserts) and propagate meaningful error messages 
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that are then part of a backtrace output given to the calling application (host) on occurrence of an 
error. 

The full implementation of Zencode available at the time of publishing this document is inside the 
source-code files 'zenroom/src/lua/zencode_*' and is relatively easy to maintain for the pilots 
analyzed in our project, as well easy to extend to more use-cases. The current implementation 
addresses specific schemes that useful to the pilots in DECODE, while contemplating future extension: 

• Simple symmetric encryption of cipher-text by means of a PIN and KDF transformations (pilot: 
Amsterdam Register) 

• Diffie-Hellman asymmetric key encryption (AES-GCM) (pilot: Making Sense IoT) 

• Blind-sign credentials for unlinkable selective attribute revelations1 (pilot: DECIDIM and Gebied 
Online) 

• In addition there is also the implementation of an "implicit certificate" crypto scheme (Qu-
Vanstone, ECQV) that is limited to first order curve transformations, which may apply to pilots 
requiring simple certification schemes2. 

All the implementations are illustrated in more detail in the following sections. 

Declarative Schema Validation 
In order to make the processing of Zencode more robust, all data used as input and output for its 
computations is validated according to predefined schemas. This makes the Zencode DSL a declarative 
language in which data recognition is operated before processing. 

The data schemas are added on a per-usecase basis: they refer to specific cryptographic 
implementations as they are added in Zencode. Careful evaluation regarding their addition is made to 
realize if old schemas can be extended to include new requirements. 

Schemas are expressed in a simple format using Lua scripting syntax and consist of: 

• an importer from JSON data structures containing hex or base64 encoded complex data types 

• an exporter of complex structured data types to big numbers encoded using hex or base64 
encoding 

Every data structure processed in Zencode enters as a JSON string input (IN), it is decoded and parsed, 
then checked for cryptographic validity (for instance checking point-on-curve) and stored in its 

 
1 This implementation refers to work on the Coconut credential system (Sonnino et. al, 2018) designed after specific needs 

in DECODE's pilots. It does not implement, however, the threshold issuance part, which is only required in the scenario 
of a fully open blockchain implementation, which is still work in progress. 

2 It is important to note that while the ECQV scheme was not examined by other partners in our project, it has been 
choosen for its stable role in the industry and for its augmented complexity within an approachable implementation, 
complexity which could better inform the Zencode implementation. 
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validated data type (ACK) and at last is encoded back from defined data types to JSON output string 
using encoding methods (OUT). This creates three cascading sections in the HEAP of Zenroom: 

1. IN 

2. ACK 

3. OUT 

Each of these sections correspond to the language steps in Zencode: 

1. Given (IN) 

2. When (ACK) 

3. Then (OUT) 

Providing a rigid structure to context-specific (or pilot-specific) implementations of Zencode scenarios: 
the parser should always operate data recognition in the Given/IN phase, operate transformations in 
the When/ACK phase and finally render output in the Then/OUT phase. Future plans include the lock-
down of this flow with checks operated by Zenroom to insure that different areas of the HEAP are not 
accessed by the wrong section of Zencode scenario implementations. 
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Work In Progress 

This page is left intentionally blank. 

More details on the Zenroom implementation will be published in subsequent iterations of this 
whitepaper. 
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